Bobkov's inequality

From HandWiki

In probability theory, Bobkov's inequality is a functional isoperimetric inequality for the canonical Gaussian measure. It generalizes the Gaussian isoperimetric inequality. The equation was proven in 1997 by the Russia mathematician Sergey Bobkov.[1]

Bobkov's inequality

Notation:

Let

  • [math]\displaystyle{ \gamma^n(dx)=(2\pi)^{-n/2}e^{-\|x\|^2/2}d^nx }[/math] be the canonical Gaussian measure on [math]\displaystyle{ \R^n }[/math] with respect to the Lebesgue measure,
  • [math]\displaystyle{ \phi(x)=(2\pi)^{-1/2}e^{-x^2/2} }[/math] be the one dimensional canonical Gaussian density
  • [math]\displaystyle{ \Phi(t)=\gamma^1[-\infty,t] }[/math] the cumulative distribution function
  • [math]\displaystyle{ I(t):=\phi(\Phi^{-1}(t)) }[/math] be a function [math]\displaystyle{ I(t):[0,1]\to [0,1] }[/math] that vanishes at the end points [math]\displaystyle{ \lim\limits_{t\to 0} I(t)=\lim\limits_{t\to 1} I(t)=0. }[/math]

Statement

For every locally Lipschitz continuous (or smooth) function [math]\displaystyle{ f:\R^n\to[0,1] }[/math] the following inequality holds[2][3]

[math]\displaystyle{ I\left( \int_{\R^n} f d\gamma^n(dx)\right)\leq \int_{\R^n} \sqrt{I(f)^2+|\nabla f|^2}d\gamma^n(dx). }[/math]

Generalizations

There exist a generalization by Dominique Bakry und Michel Ledoux.[4]

References

  1. Bobkov, Sergey G. (1997). "An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space". The Annals of Probability (Institute of Mathematical Statistics) 25 (1): 206–214. doi:10.1214/aop/1024404285. 
  2. Bobkov, Sergey G. (1997). "An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space". The Annals of Probability (Institute of Mathematical Statistics) 25 (1): 209. doi:10.1214/aop/1024404285. 
  3. Carlen, Eric; Kerce, James (2001). "On the case of equality in Bobkov's inequality and Gaussian rearrangement". Calculus of Variations 13: 2. doi:10.1007/PL00009921. 
  4. Bakry, Dominique; Ledoux, Michel (1996). "Lévy–Gromov's isoperimetric inequality for an infinite dimensional diffusion generator". Inventiones Mathematicae 123 (2): 259–281. doi:10.1007/s002220050026.